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General two-loop beta functions for gauge theories with 
arbitrary scalar fields 
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University of Cambridge, Department of Applied Mathematics and Theoretical Physics, 
Silver Street, Cambridge CB3 9EW, England 

Received 1 September 1982 

Abstract. A renormalisation group p function is defined for the scalar potential and is 
calculated to two-loop order for general gauge scalar field theories. 

Recently the two-loop counterterms for an arbitrary gauge scalar field theory have 
been computed using background field techniques and dimensional regularisation by 
van Damme (1982). Within our approach to such calculations (Jack and Osborn 
1982), these results have been confirmed (Jack 1983). For any specific theory this 
information can be used to obtain the corresponding two-loop approximations to the 
p functions, for any of the coupling constants or mass terms that are relevant in 
renormalisation group equations. However, the choice of such coupling constant or 
mass parameters is somewhat arbitrary. In this paper we show how the results of van 
Damme (1982) can be used to determine for the entire scalar potential U a corre- 
sponding p function, to the two-loop level, without any particular choice of U. For 
renormalisable field theories U(cp) is a general quartic polynomial in a set of scalar 
fields {pi}, as is also then the associated pu(cp). They may both be readily decomposed 
in terms of the coefficients of a convenient set of independent monomials in cp ; for 
U these form the physical parameters of the theory, coupling constants and masses. 
Nevertheless the primary result for pu is perhaps more straightforward and may 
possibly be of interest in the discussion of grand unified theories. 

Regarding cp as a column vector, the general gauge-scalar field theory under 
consideration is described by a Lagrangian density 

2Z= - ( ~ / . L ~ ) - ~ ( F , , Z J ~ ~ " )  +i(D,p)TZDpcp - V ( 9 )  (1) 

D , = d , + A : ,  A :  = A.u,aTa, (2) 

where 

is the coyariant derivative for the representation of the gauge group G defined by p. 
{T,} are a set of antisymmetric matrix generators of G in this representation satisfying 

and then FZy = [D,, D,]. The generators of the adjoint representation are ( t td )bc  = 
-Cabc and for X ,  Y vectors belonging to this representation the invariant scalar product 
is ( X U )  = X ,  Ya. For invariance under G 

Ed, 2'41 = 0, P a ,  Z,l = 0, V(cp) = V(g"p). (4) 
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ZA, 2, and V are chosen so as to cancel the divergences that arise order by order in 
the loop expansion. Using dimensional regularisation, 2’ is extended to d dimensions 
and a regularisation scale mass p is introduced. If, for E = 4 - d,  

p - - E V U ( p E ’ 2 q )  = v(z,”2cp) ( 5 )  

then the parameters in V,(q), and from (1) ZA also, retain their canonical dimensions 
even when E # 0. To zeroth order we take 

2:’ = N-’, 2:) = 1, vu (q Yo) = U ( q  1, (6) 

so that N (= NT) can be regarded as incorporating the basic finite coupling constants 
of the gauge fields and U ( q )  contains those for the scalar fields. For a simple group 
G, ZA must be proportional to the unit matrix and in this case we may write N = lg’. 
With minimal subtraction ZA, 2, and Vu contain to each order in the loop expansion 
just poles in F with coefficients polynomial functions of N, derivatives of U and also, 
for Vu, cp explicitly. 

For the gauge-invariant quantities ZA and V,(q) the results of van Damme (1982) 
and Jack (1983), with the slight generalisations to allow for N in (6 ) ,  are at one loop 

22 ’  = ( 1 / ~ ) ( 1 / 1 6 ? ~ ~ ) ( ~ C  -fR), 
Vif’ = (1/~)(1/16?~~)[$Tr(U”~)+3U’~T~q +$Tr(PNPN)]. (7) 

with Sij = U,!‘l~,,,U~L,,,,. It is easy to see that NC = CN = -N,bt:dtEd commutes with R .  
To set up renormalisation group p functions we relate ZA, Vu to unrenormalised, 

cut-off or &-dependent, coupling parameters by 

=No1,  CL-EVU(PE’2cp) = Uo(q). (10) 
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No, U. are required to be independent of p and differentiating then gives 

Arising from (10) N,  U have an induced dependence on cc. and the corresponding p 
functions are therefore defined by 

bN=C(-NI d 5 

dCL No.Uo 

To zeroth order in the loop expansion from ( 6 )  and ( l l ) ,  we get 

a @g) = -EN, f ig) = -eB, B ( Q )  = ( ; v i r -  l)U(cp). (13 )  
Qi 

If we now let 

@N -EN + PN, = -EB +p”, (14) 

then, regarding ZA, Vu as depending on N, U ( 1  1 )  can be recast as 

a a 
PNGZA+PU-ZA=E au 

D =sa/au = tqia/aQi. .  

By virtue of renormalisability pN, pU are finite, independent of E .  These equations 
may straightforwardly be solved iteratively in the loop expansion. To two loops ZA 
is independent of U and also, since Zg) is independent of N as well, we get 

(16) -N-’pE)N-’ - - E Z Z ) ,  -N-’p E)N-l - - E ( 1  + Na/aN)zk?’ = 2EZ2).  

Further, for pu 

pg)  = E ( 1  +Na/aN + D ) V ? ) ,  

Since Vu is polynomial in U the derivatives with respect to U are well defined. Thus, 
for instance 

B a u l / a u  = B ;  

and from (13 )  and (15 )  the action of the derivative operator D is given by 

D U !!” - U ”” ilk1 - rlk1, 
DU!” =;U!!’ 

I J  k y k y  
D u (  =-;U:, D u ! !  =O, 

(18) (Na/aN + D )  Vl“’ = ( n  - I) V:’, 

Hence with (7) and ( 9 ) ,  (16 )  gives to two-loop order 

n = 1 , 2 .  

(19) P N  = -( 16~*)- ’N (YC‘ - fR ) N  - ( 1 6 ~  2)-2N ( y C 2 N  - $RCN - 4R ‘)N, 



1104 I Jack and H Osborn 

for RLb =Tr(T2TaTb) and from (17), using (18), 

pu = (167r2)-1{~Tr(U’~2)+3U’TT2cp +:Tr(PNPN)} 

+ ( 1 67r ’)-’{-?Nab Tr ( t  ZdNPt idNP) 

+ 2 Tr[ (YC - R ) NPNPN ] - 1 5 (NPN ) ab(P Ta T b  T2p 

+ N, cnNb ‘b(P Ta I T b  I U” T b  Tap + U’T T T2q 

+g(13NCN -NRN)abU’TTaTbcp - 5(NPN),b Tr(U”TaTb) 

-Tr(U”’TZ) - 3Nab Tr(U”TaU”Tb) 

+&U’TScp -;ul’;,”U!” Jki }, (20) 

It is a non-trivial check that the 1 / ~  terms on the right-hand side of the expression 
for BE) in (17) cancel. This is straightforward apart from the requirement 

(NcN)abu’TTaTbcp + 2Na~,Nb~bcpTTa~Tb~~“[Tb, Ta]cp = 0 

which is true by virtue of Tr(tzdNf:dN) = -(NCNLd and an identity coming from the 
gauge invariance of U given by Jack (1983). 

The result (19) subsumes (for no fermions) that of Jones (1982) for a gauge group 
of the form G1 x G2, with G1, Gz simple. In this case cp is expressible as a product 
of representations of G1, Gz  with the generators of G of the form T = TI + 1 2  + l1 x Tz. 
If d l ,  dZ are the dimensions of the two representations for T1, Tz then we have 

Further, if the two representations are irreducible, T: = -cT1ll, Ti = - C ~ ~ l z  we get 
R ‘ =  (cTlgl+cT2g2). Hence pgl, p,, can be read off from (19). 

As an example of the application of (20) we consider the Higgs potential for the 
Weinberg-Salam model. With gauge group su (2 )TxU( l )y  the Higgs scalar H is a 
complex T = 2, Y = $ doublet with interactions described by the basic Lagrangian 
density 

2 2 

1 

1 2 2  2’g) = (D,H)’D,H - $A (HtH - 2 f ) . 
To apply (20) H is decomposed into real fields, with 

so that 

pu = (167r2)~1{ (H’H)23[2A2-~A(3g2+g’2 )+~(~g4+~gZg’2+g’4 ) ]  

+HtHf23(iA (3g2 + g”) - A ’) +;A ’p} 
+ ( 1 6 7 r 2 ) - Z { ( H t H ) 2 [ ~ g 6 _ ~ g 4 g r 2 _ ~ g 2 g ~ 4 _ ~ g ’ 6 - ~ A g 4 + ~ ~ g  2 g r2 

+ 6A ’(3g2 + g”) -?A3) +PA ’(3g2 + g ’ 2 ) } .  

+ ~ A g ‘ 4 + 9 A 2 ( 3 g 2 + g ’ 2 ) - 3 9 A 3 ] - H t H f 2 ( - ~ A g 4 + ~ A g 2 g ’ 2 + ~ A g ’ 4  

(22) 

To obtain completely general expressions for arbitrary renormalisable field theories 
it remains only necessary to consider the contribution of fermions. This will be done 
elsewhere. 
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